
 1

Orestis Alpos
oralpos@gmail.com

University of Bern

Secure Multiparty Computation:
Definitions and common approaches

 2

What is MPC

 3

• Let F() be a function of n inputs, x
i
 , …, x

n

• Each party P
i
holds input x

i

• Parties want to compute F(x
1
, …, x

n
)

What is MPC

 4

• Privacy: Any information learnt by P
i
 can be

derived by x
i
 and y

• Correctness: The output received by each
player is correct

For example, in an auction:
– The output y is the highest bid.
– The party with highest bid will win
– All parties will know it
– Nothing should be learnt for the other bids. Of

course, y reveals that all other bids are lower than
that.

Properties

 5

More properties

• Independence of inputs: Corrupt parties must choose inputs independent of
honest parties

• Fairness: Corrupt parties receive output if and only if honest parties do

• Guaranteed output delivery (Robustness): Corrupt parties cannot prevent honest
parties from receiving the output

– Stronger than fairness

Not exhaustive
Each scheme satisfies different properties
Not all properties always guaranteed, there are trade-offs!

 6

Formal definition

Ideal world
• An external trusted functionality does

the computation
• Properties hold by definition

Real world
• No trusted party, parties run protocol
• Prove that the adversary cannot do

any worse than in ideal world

 7

Additional definition parameters

• Adversarial behavior
– Passive (honest-but-curious, semi-honest)
– Active (malicious)
– Covert

• Corruption strategy
– Static
– Adaptive
– Mobile (proactive security)

• Corruption thresholds
– Honest supermajority (t < n / 3)
– Honest majority (t < n / 2)
– Dishonest majority (security with abort)

(t < n)

• Type of security
– Information theoretic
– Computational

• Modular composition
– Sequential (stand-alone setting)
– Parallel (universal composability, UC)

Each scheme defined in one specific
setting, for example active adversary,
static corruptions, honest majority.
There are security-efficiency trade-offs.

 8

MPC approaches

 9

First step

• Write F as an arithmetic circuit C of add and multiply gates.

• Evaluate C gate by gate

• Addition and multiplication are universal over F
p

 10

Whatever needs to be computed,
can be computed securely

 11

Three approaches to evaluate the circuit

•

•

•

 12

1. Garbled circuits

• Garbler and Evaluator [Yao82]

• Treat gate as matrix
For example, AND gate has 4 rows, one for
each possible input pair

• Encrypt each row, send only the keys that
decrypt one input

• When output also encrypted, we can use it
as input to the next gate

 13

2. Fully homomorphic encryption

● Add and Mult are specific to the scheme

 14

2. Fully homomorphic encryption

• For MPC, we also need partial decryption (sk is shared among parties)

• For passive, computational security with two rounds of communication:

• Each p
i
encrypts its input and broadcasts

• Parties compute the circuit on ciphertexts

• Each p
i
partially decrypts result and broadcasts

• Parties combine partial decryptions to obtain result

 15

2. Fully homomorphic encryption is promising

 16

2. Fully homomorphic encryption is slow

 17

2. Fully homomorphic encryption vs (P/S) HE

• Partially homomorphic encryption

• Somewhat homomorphic encryption

• Examples:

– ElGamal: Enc
Y
(m) = (gr, mYr)

– RSA: Enc
e
(m) = me

– Both partially homomorphic under multiplication

 18

3. Secret sharing

• Share a value x among n participants, so that [Shamir79]
– t + 1 can recover the secret
– any t have no information about it

• Share
– Degree-t random polynomial: f(x) = k + a

1
x + … + a

t
xt

– Give each party the share s
i
 = f(i)

• Reconstruct
– t + 1 pairs (i, s

i) uniquely determine f

– Lagrange interpolation

 19

3. General secret sharing (LSSS)

• Share a value x among n parties, given access structure A, so that [CDM00]
– An authorized set in A can recover the secret
– Any other set has no information about it

• MSP (labeled 2D matrix M) is equivalent to LSSS

• Share
– Random vector r = (k, a

1 , … , a
d-1

)

– Calculate shares as s = Mr

• Reconstruct
– For quorum A with shares s

A
 find recombination vector λ

A such that λAMA = e

– The value is x = λ
A
s
A

 20

3. Secret sharing - Add

• Players hold sharings
– [x] of x, made with deg-t polynomial
– [y] of y, made with deg-t polynomial

• Obtain sharing [x + y] of x + y by locally adding shares

• No interaction

 21

3. Secret sharing - Multiply

• Players hold sharings
– [x] of x, made with deg-t polynomial f

1

– [y] of y, made with deg-t polynomial f
2

• Obtain sharing [xy] of xy by locally multiplying shares

• But polynomial g = f
1
f
2
has degree 2t

 22

3. Secret sharing - Multiply

• Degree reduction

• Luckily, we have 2t + 1 shares of g (we started with t < n / 2)

• These shares determine g(0) as

• Each p
i
 shares g(i) with deg-t polynomial

• Parties now calculate

• This is a sharing of g(0) with the correct degree

 23

3. Secret sharing - Multiply

• Similar idea for LSSS (Maurer)

• Requires the exchange of n2 elements (each party send n elements)

 24

3. Secret sharing - Multiply with Beaver trick

• Assume [a], [b], [c], with ab = c and a,b,c unknown, are available [Beaver91]

• Parties open [ε] = [x] – [a]. Reconstruct ε

• Parties open [δ] = [y] – [b]. Reconstruct δ

• Parties compute [z] = [c] + ε[b] + δ[a] + εδ locally

• Now 2n elements are exchanged (each party send 2 elements)

Three approaches to evaluate the circuit - Summary

• Garbled circuits
– 2PC
– Low communication complexity
– Practical and efficient for Boolean operations
– Large circuit size for arithmetic operations

• Homomorphic encryption
– Low communication complexity
– Slow (computationally expensive operations)

• Secret sharing
– No computationally expensive PK operations
– High communication complexity
– Number of rounds depends on multiplicative depth

 26

Combine the three approaches:
The preprocessing model
• Very fast online phase [DPSZ12]
– Information theoretic primitives
– No PK
– Assume everything is given

• We saw how parties can add and multiply values, given sharings + Beaver triples

• Slow offline phase
– Create everything for online phase
– Heavy HE
– Does not depend on circuit C
– (it is not really offline)

• We saw how parties can create sharings (Beaver triples is similar)

 27

From passive
to active security

 28

From passive to active security

• Adversary can send false shares

• We need a way to verify

• One solution: Verifiable secret sharing (Commitments)
– Information-theoretic
– Computational Don’t slow me down!

 29

From passive to active security

• Sacrifice security properties to gain efficiency

• Dishonest majority, security with abort

• We can detect cheating, not correct it

Thank you!

Orestis Alpos
oralpos@gmail.com
orestisalpos.github.io

References:
[Yao82] DBLP:conf/focs/Yao82b
[Beaver91] DBLP:conf/crypto/Beaver91a
[CDM00] DBLP:conf/eurocrypt/CramerDM00
[DPSZ12] DBLP:conf/crypto/DamgardPSZ12

