

Consensus Beyond Thresholds:
Generalized Byzantine Quorums Made Live

Orestis Alpos
University of Bern

Christian Cachin
University of Bern

Symposium on Reliable Distributed Systems 2020
September 2020

Consensus

• Agree on a common value

• Trust assumptions in thresholds

• n = 7

• f = 2

• All participants trusted equally

Consensus algorithms still in monoculture

• Agree on a common value

• Trust assumptions in thresholds

• n = 7

• f = 2

• All participants trusted equally

• Participants are of the same type

The participants are diverse

• Operating system
• Hardware
• Administrators
• Location

• Fail with different probabilities

• Failures are correlated

• Expressive and resilient through complex
and correlated trust assumptions

Byzantine quorum systems
A rich and expressive abstraction
• n parties: Malkhi & Reiter, 1998 [MR98]

• Fail-prone system : A fail-prone set in contains all the failed parties

• Quorum System : The set of quorums

• Such that the Consistency and Availability conditions hold:

• By definition generalized

A threshold Byzantine quorum system

•

• : All subsets with cardinality f = 2

• : All subsets with cardinality n – f = 5

• Consistency

• Availability
Any 2 fail, the other 5 are correct

• n > 3f

We need to do better

• Generalized BQS → realistic, better resilience, but not yet practical

• Example: The 2-layered-1-common generalized BQS

Related work

• Stellar consensus protocol https://www.stellar.org/papers/stellar-consensus-protocol

– Generalized trust assumptions
– Different for each user
– Not based on the classical Byzantine quorum system theory

• Benaloh and Leichter [BL88] first secret sharing over generalized structures

• Hirt and Maurer [HM00] multiparty computation with generalized failure patterns

• Cramer, Damgård, and Maurer [CDM00] use monotone span programs for
generalized multiparty computation

Implementing generalized
Byzantine quorum systems

● Challenges (and a solution that would not work).

● Generalized BQS as monotone boolean formulas.

● Generalized BQS as monotone span programs.

Implementing a generalized BQS
is a challenging task
Implement BQS as enumeration of all quorums 792 quorums

• Specify in user-friendly way

• Efficient and compact encoding

• Efficient quorum-checking

Generalized Byzantine quorum systems
as monotone boolean formulas (MBF)

Parsing a BQS as an MBF

• Using logical and, or, threshold operators

Storing the BQS as an MBF

• As a tree

• size is O(n), where n the size of MBF

Checking for quorums

• Check whether set A is a quorum

• evaluate formula on input A, time O(n)

Generalized Byzantine quorum systems
as monotone span programs (MSP)

Monotone span programs (MSP)

• Each participant gets one vector (or more)

• If the vectors of a set of participants span a target vector, the set is accepted

• An MSP implements a quorum system if it accepts exactly its quorums

• There are functions efficiently encoded by an MSP, but not by a formula [BGW99]

Parsing a BQS as an MSP

• Insertion: Nikov, Nikova [NN2004]
– defined on ,
– defined on
– replaces by quorums in

• Insertion on MSPs:
– implements
– implements
– can be constructed to implement

• Given a formula, create the MSP with recursive insertions of nested sub-formulas

Parsing a BQS as an MSP

• Construct the MSP that implements a given MBF
– Recursive insertions.
– The Vandermonde matrix V(n,t), when seen as an MSP, implements

the access structure

Checking for quorums using an MSP

• Check whether has solutions, using Gaussian elimination.

• Time complexity is O(n3), where n the dimension of M, can be optimized using
PLU-decomposition (but still cubic on average).

Consensus beyond thresholds:
Generalized HotStuff

HotStuff

• Consensus algorithm by Yin et al [YMRGA19]

• Efficient, linear communication, speed of network

• Libra cryptocurrency

• Replicas run the protocol

• Clients submit commands and collect responses

Generalized HotStuff

• Protocol advances in epochs

• Each epoch four phases

• In each phase
– The leader creates a proposal and sends to other replicas
– The replicas validate and vote
– The leader waits for n – f a quorum of votes
– Upon receiving them, creates a certificate, used in next proposal

• The generalized protocol satisfies the same safety
and liveness properties as threshold HotStuff

System
BQS implementation in

Supported types of
BQSreplicas clients

Counting-All counting counting threshold

MBF-All MBF MBF threshold & generalized

MSP-All MSP MSP threshold & generalized

MSP-Replicas MSP - threshold & generalized

Evaluated systems

● Based on the prototype HotStuff implementation: github.com/hot-stuff/libhotstuff

When the number of parties is small
all the generalized protocols are efficient

● 4 replicas, varying number of clients (1 up to 8) and request rate
● All systems instantiated with a threshold BQS with n = 4, f = 1

In larger systems the MBF-All protocol
is as efficient as the original Counting-All

● Up to 31 replicas
and 32 clients

● All systems again
instantiated with a
threshold BQS with
n = 3f + 1

The MSP-Replicas protocol is still comparable to Counting-All

The complexity of the BQS moderately
affects the MBF-All implementation

● 16 up to 40 replicas
and 32 clients

● MBF-All
instantiated with the
threshold and the
2L1C BQS

The complexity of the BQS affects
the MSP-Replicas protocol only slightly

● 16 up to 40 replicas
and 32 clients

● MSP-Replicas
instantiated with the
threshold and the
2L1C BQS

The MBF-All protocol
outperforms the MSP-Replicas

● 16 up to 40 replicas
and 32 clients

● Systems
instantiated with the
threshold and the
2L1C BQS

Thank you!

Orestis Alpos
orestis.alpos@inf.unibe.ch
crypto.unibe.ch/oa/
Twitter: @alpenliebious

[MR98] DBLP:journals/dc/MalkhiR98
[BGW99] DBLP:journals/combinatorica/BabaiGW99
[NN04] DBLP:journals/iacr/NikovN04
[YMRGA19] DBLP:conf/podc/YinMRGA19
[BL88] DBLP:conf/crypto/Leichter88
[HM00] DBLP:journals/joc/HirtM00
[CDM00] DBLP:conf/eurocrypt/CramerDM00

Full paper: arxiv.org/abs/2006.04616 Blogpost: cryptobern.github.io/beyondthreshold/

	Slide 1
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

