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Consensus

• Agree on a common value

• Trust assumptions in thresholds

• n = 7

• f = 2

• All participants trusted equally



  

Consensus algorithms still in monoculture

• Agree on a common value

• Trust assumptions in thresholds

• n = 7

• f = 2

• All participants trusted equally

• Participants are of the same type



  

The participants are diverse

• Operating system
• Hardware
• Administrators
• Location

• Fail with different probabilities

• Failures are correlated

• Expressive and resilient through complex 
and correlated trust assumptions



  

Byzantine quorum systems
A rich and expressive abstraction
• n parties:       Malkhi & Reiter, 1998 [MR98]

• Fail-prone system     : A fail-prone set in     contains all the failed parties

• Quorum System     :   The set of quorums

• Such that the Consistency and Availability conditions hold:

• By definition generalized



  

A threshold Byzantine quorum system

•

•     : All subsets with cardinality f = 2

•     : All subsets with cardinality n – f = 5

• Consistency

• Availability
Any 2 fail, the other 5 are correct

• n > 3f



  

We need to do better

• Generalized BQS → realistic, better resilience, but not yet practical

• Example: The 2-layered-1-common generalized BQS



  

Related work

• Stellar consensus protocol    https://www.stellar.org/papers/stellar-consensus-protocol

– Generalized trust assumptions
– Different for each user
– Not based on the classical Byzantine quorum system theory

• Benaloh and Leichter [BL88] first secret sharing over generalized structures 

• Hirt and Maurer [HM00] multiparty computation with generalized failure patterns 

• Cramer, Damgård, and Maurer [CDM00] use monotone span programs for 
generalized multiparty computation



  

Implementing generalized 
Byzantine quorum systems

● Challenges (and a solution that would not work).

● Generalized BQS as monotone boolean formulas.

● Generalized BQS as monotone span programs.



  

Implementing a generalized BQS
is a challenging task
Implement BQS as enumeration of all quorums 792 quorums

• Specify in user-friendly way

• Efficient and compact encoding

• Efficient quorum-checking        



  

Generalized Byzantine quorum systems 
as monotone boolean formulas (MBF)



  

Parsing a BQS as an MBF

• Using logical and, or, threshold operators



  

Storing the BQS as an MBF

• As a tree

• size is O(n), where n the size of MBF



  

Checking for quorums

• Check whether set A is a quorum

• evaluate formula on input A, time O(n)



  

Generalized Byzantine quorum systems 
as monotone span programs (MSP)



  

Monotone span programs (MSP)

• Each participant gets one vector (or more)

• If the vectors of a set of participants span a target vector, the set is accepted

• An MSP implements a quorum system if it accepts exactly its quorums

• There are functions efficiently encoded by an MSP, but not by a formula [BGW99]



  

Parsing a BQS as an MSP

• Insertion:    Nikov, Nikova [NN2004]
–       defined on       ,
–       defined on
–       replaces     by quorums in 

• Insertion on MSPs:
–        implements 
–        implements  
–        can be constructed to implement 

• Given a formula, create the MSP with recursive insertions of nested sub-formulas



  

Parsing a BQS as an MSP

• Construct the MSP that implements a given MBF
– Recursive insertions.
– The Vandermonde matrix V(n,t), when seen as an MSP, implements 

the access structure 



  

Checking for quorums using an MSP

• Check whether                   has solutions, using Gaussian elimination.

• Time complexity is O(n3), where n the dimension of M, can be optimized using 
PLU-decomposition (but still cubic on average).



  

Consensus beyond thresholds:
Generalized HotStuff



  

HotStuff

• Consensus algorithm by Yin et al [YMRGA19]

• Efficient, linear communication, speed of network

• Libra cryptocurrency

• Replicas run the protocol

• Clients submit commands and collect responses



  

Generalized HotStuff

• Protocol advances in epochs

• Each epoch four phases

• In each phase
– The leader creates a proposal and sends to other replicas
– The replicas validate and vote
– The leader waits for n – f a quorum of votes
– Upon receiving them, creates a certificate, used in next proposal

• The generalized protocol satisfies the same safety 
and liveness properties as threshold HotStuff



  

System
BQS implementation in

Supported types of
BQSreplicas clients

Counting-All counting counting threshold

MBF-All MBF MBF threshold & generalized

MSP-All MSP MSP   threshold & generalized

MSP-Replicas MSP -   threshold & generalized

Evaluated systems

● Based on the prototype HotStuff implementation: github.com/hot-stuff/libhotstuff



  

When the number of parties is small
all the generalized protocols are efficient

● 4 replicas, varying number of clients (1 up to 8) and request rate
● All systems instantiated with a threshold BQS with n = 4, f = 1



  

In larger systems the MBF-All protocol
is as efficient as the original Counting-All

● Up to 31 replicas 
and 32 clients

● All systems again 
instantiated with a 
threshold BQS with 
n = 3f + 1

The MSP-Replicas protocol is still comparable to Counting-All



  

The complexity of the BQS moderately
affects the MBF-All implementation

● 16 up to 40 replicas 
and 32 clients

● MBF-All 
instantiated with the 
threshold and the 
2L1C BQS



  

The complexity of the BQS affects 
the MSP-Replicas protocol only slightly

● 16 up to 40 replicas 
and 32 clients

● MSP-Replicas 
instantiated with the 
threshold and the 
2L1C BQS



  

The MBF-All protocol
outperforms the MSP-Replicas

● 16 up to 40 replicas 
and 32 clients

● Systems 
instantiated with the 
threshold and the 
2L1C BQS



  

Thank you!

Orestis Alpos
orestis.alpos@inf.unibe.ch
crypto.unibe.ch/oa/
Twitter: @alpenliebious
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Full paper: arxiv.org/abs/2006.04616 Blogpost: cryptobern.github.io/beyondthreshold/
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